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SUMMARY

An approximate method for determining the far field flow properties of a
rocket exhausting into a vacuum is presented. The techniyue described is based on
radial flow and assumes a d2nsity veriation both along and normal to the jet center-

The resulting jet flow field is compared with solutions by the method of

line.
Example calculations are

characteristics and is shown to have good agreement.
provided to demonstrate the present method.
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NOMENCLATURE

a Speed of sound

A Area

E Constant defined by Equation (13)

E' Constant defined by Equation (26)

h Radius from nozzle exit

M Local Mach number at the point (h, 6)
' Local Mach number at the point (h, 8 ) in the flow field of a sonic nozzle
N Constant defined i{n Equation (&)

P Pressure

r Radius

S Control surfuce

v Velocity

X Axial distance from nozzle exit

Y Distance normal to jet centerline

Y Gas ratio of specific heats

P Gas density

Subscripts

e Nozzle exit conditions

Nozzle throat conditions
o Stagnation (chamber) conditions
8 Refers to spherical cap
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OBJECTIVES

The objective of this technical note is to describe an approximate method
for determining the far field flow properties for a rocket exhausting into a vacuum.

CONCLUSIONS AND RECOMMEWDATIONS

An approximate method for determining the far field flow properties for a
rocket exhausting into a vacuum has been presented. A comparison of Mach number
distribution both along and normal to the jet axis with solutions by the method of
characteristics indicates good agreement. The present method should provide an
adequate approximation for rocket flow field problems in a vacuum. Recommendations

are the fcllowing:
(1) Investigate i{urther the limits of this approximate solution for:
(a) Nonvacuum conditions.

(b) Nozzles with noncircular cross sections at the exit plane.

(2) Develop an improved approximate method which describes the exhaust
flow past 90 degrees. (The present method is limited to expansion

angles less than 90 degrees.)




SECTION 1

INTRODUCTION

When a rocket exhausts into a vacuum, the flow undergoes a large expan-
sion and the resulting free jet of gas occupies a considerable volume in space.
The presence of this large free jet of gas can produce serious aerodynamic, aero-
thermal, and communications problems. Some of these problems are: the effects of
jet impingement forces on the dynamics of nearby surfaces; the exhaust blast on
the surface of the moon dur . ng ascent or descent of a rocket; the heating of nearby
sur faces submerged in the rocket plume; and the effects of the exhaust gas on
visual or other guidance information,

In order to investigate these problems, an adequate definition of the
rocket exhaust flow field is necessary. In most céses, tue method of character-
istics has been utilized to determine properties in the rocket flow field. How-
ever, the procedure is quite laborious, costly, and generally requires machine
computations. To provide a more convenient and practicable means for defining the
rocket flow field in a vacuum, an approximate method is described in this technical
note. The technique can be utilized to calculate pressures, densities, temperatures
and Mach numbers in the rocket flow field from a knowledge of only the nozzle geom-
etry and the ratio of specific heats for the gas.



SECTION 2

ANALYSIS

Consider the exhaust jet of an ideal inviscid gas issuing isentropically
from a nearly parallel nozzle (of exit radius r, and exit Mach number M,) into a
vacuum. The flow is continuous and steady, and the ratio of specific heats, 7V,
is assimed constant.

At distances large compared to the nozzle dimensions, theoretical solu-
tions for the exhaust flow in a vacuum show that the flow field approaches radial
flow, {.e., the streamlines are straight and appear to emanate from a common nource
(see Figure 1). The basic solution of radial flow stipulates that the mass flux,
£V, varlies as 1/h2, where h is the radial distance from the nozzle. In a vacuum,
the pressure rapidly approaches zero so that the velocity can be assumed constant.
In this case, the density takes the form [ ~ 1/h2.

Most of the mass and mownentum of the jet are concentrated near the jet
centerline, so that the variation of density in the direction normal to the jet
centerline must be considered. Reference 1 assumes that the density on a spherical
cap at a distance h from the nozzle exit is of the form:

-2

b (cos 9)K (1)

r
e

L .3
e

e

Where '/ 1is the azimuthal angle measured from the jet centerline, and B and K are
constants. By integrating the_conservation of mmass and momentum equations, and
neglecting terms of order I/Me, Reference 1 has obtained a first-order solution for
the density profile:

-2
él = % f%‘ (cos G)K (2)
e e




where K = y (y-1) MZ . The above expression has t.. restriction that M§:>> 1 and
h i

= >2 L.

e

In the present analysis, a more general solution which includes the effects
of higher order tergs is sought, t.e., it 18 desirable to remove the restriction in
Equation (2) that Mg >> 1. The basic approach to the problem is that of Reference :.
A density profile similar in form to Equation (1) is assumed. The continuity and
momentum equations are then solved simultaneously to obtain the density distribution
in the jet flow field. From this result, a generalized me:hod ror calculating con-
tours of constant Mach number for a rocket flow field in a vacuum {8 derived.

The system under analysis is shown in Figure 2 (a) and (b). The flow is
considered radial and axially symmetric. The surfuce S is the sum of the hemispher-
ical surface (As) of radius h, and its projection on the Y-Z plane, Ay_;. Flow
enters the control surface only through the nozzle exit area, A,, and exits through
the surface, Ag.

On the spherical cap, the velocity is assumed radial and constant. That
is,*

vV =V 1) (3)

where V.. 18 the maximum velocity obtainable by expanding to zero pressure, and n
18 a unit vector* everywhere normal to the surface S. The density profile on the
surface, As' is assumed to be of the form:

[v \ -2
;)é_‘% \-‘-,3 ) I-h—) (cons;@)N (4)

"

e max e
where E and N are ccnstants.

For steady flow, the integral form of the continuity equation is:

¢}.p(v - mn) dS =0
S

Over the surface S (see Figure 2), the above integral is written:

-
]};.OVS ‘ n) dAs - (;JeVeAe) = 0 (5)
IAB
Introducing the expressions for Vs from Equation (3) and P from Equation (4), then

*Vector quantities are symbolized by bold-face letters.



Equation (5) becomes:

m/2 (6)
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Integrating and solving for E, we obtain:
E = N+l (continuity) (7)

Conservation of momentum need be rconsidered only in the X-direction, since
the flow is axially symmetric. The integral form of the conservation of momentum
equation in the X-direction is:

gf(v-n)dS(v-i) + gp(n-l)ds=0

S S

For the surface S, the above integral becomes:

8

;[{F(Vs 'm) (V- b))+ p(n - i)] dA =(PeV2 tp
A

8

Substitution of the expressions for Vs and 0 (from Equations (3) and (&)
respectively) into Equation (8) results in the integral:

WA ' (9)
l e Ve k N N | ][ 2
S e (cos “) Y n - tj ') R | 271h sinb| d6
re 2 |V r | max . max
| ' ‘max e I ' J L i
o
N 2
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V2 1 + -“lr‘\ A
pe e YMe , e

Solving Equation (9) for E, we obtain:

v, ]
v v M2

max e

E = (N + 2)

(momentum) (10)

The constant E can now be determined by solving Equations (7) and (10)



simultaneously. Thus,

v/ 1
| 3
~ M2
Eo max /Mg (11)
max} -YMe

The velocity ratio, (V /V ), is related to the nozzle exit Mach number, Me’ by
the adiabatic relationghi$ax

= > (12)

1
I + —
YM
E = - & T (13)
A e R L
U VS BT %

Substituting Equation (7) into Equation (4), the density distribution in the flow
field i{s obtained

S e (E-1)

/
;& ) % (Ve ) h_) (cos 0) (14)
e

where E is defined by Equation (13) and (Vg/Vp,x) by Equation (12). It is seen that

both E and (ve/vmax) are functions of only Me and the ratio of specific heats, Y

Thus, for a given gas and nozzle exit Mach number, Me, the density depends only on
tae location in the flow field (h, 6).

Assuming that the flow inside of the nozzle is isentropic, the Mach
number distribution in the flow field can be derived from the isentropic relation-
ship between density and Mach number.



That is,
Po

where p o is the stagnation (chamber) density.

Solving the above expression for the Mach number, we obtain

\
1= ’1/2

. -1
. y-1 ' f

The density ratio, 75— , can be expressed

Substituting Equation (14) into Equation (17), then

Vp [, = =2 (E-1) fo
w = =% E = \ h_f (cos 6) . e
[ 2 \V | T P
0 max!\ e, (o]
From continuity considerations,
A‘ A*"
F)eve = p*a* \A |
e |
Thus, Equation (18) becomes:
-2 (E-1)
Iy P x8% A*\
-&— = % :_l_) (0089) p (
Fo \ e/ 0 max \ e/

Introducing the isentropic relationships,

(15)

(16)

(17)

(18)

(19)

(20)

(21)



Then Equation (20) is written:

1
=2 -y 1/2
T (E-1) | A,\ | [
L - % h—. (cos 6) —Al -%1\' ”l:'% (23)
Po \re/ | Te | / v

Combining Equation (23) with Equation (16), the final form for the Mach numbevr is
obtained:

, 1/2
i a7 (E-1) SRR VY S
wol2 e A EDY [y 0
Y1) 2 A r| cos 2 Y+1, !
2 iy / j J

(24)
where E 18 given by Equation (13).

Significant to note, for a given gas and nozzle geometry, the Mach number
depends only on the location in the flow field (h, 6). The above expression,
Equation (24) is general and can be used to find local Mach numbers in the flow
field for any specified Me and Y. The main restriction, implied in the radial flow

assumption, is that %L' >ol.
e

Equation (24) has been applied to construct contours of constant Mach
numbers in Figure 3 for M, = 2.21 and ¥ = 1.24. Axial distances from the nozzle
exit are given by X and distances normal to the jet centerline by Y. Evidently
h? = x2 + Y2, and 6 = Tan-l Y/X. The distances X and Y are normalized by the
nozzle exit radius, ro. A numerical example of Equation (24) is also provided in
the Appendix, Example 1.

Examination of Equation (24) suggests that for each set of Mo and VY, a
separate Mach number chart like Figure 3 must be constructed. For many variations
in M, and 7Y, the computations become quite excessive. However, by considering a
specified gas (7Y fixed), a mathematical simplification of Equation (24) is
possible. Let M' designate tiie local Mach number at the point (h,6) in the flow
field of a sonic nozzle (Me = 1.0); and, M, the local Mach number at the same point
(h, 6) in the flow field of a nozzle with an exit Mach number, M., other than ome.
The ratio of specific heats, Y , is the same for both cases.




A
*
For a sonic nozzle, Me = 1.0, rg = Ty» and, hence, Te = 1,
Substitution of these terms into Equation (24) results in:
1/2
- 1 1-7Y
[ ' - ' , \_. 1/2 N]
- 2 JE' h 2 CETEDE gt _Ll\ .
2 | ——— e (cosE) i -
Y -1 \|2 " |7 'y+l) /r
- B J
where (25)
E' = (Y21 + vyl (26)

In the general case, for a nozzle exit Mach number other than one, the
local Mach number, M, is given directly by Equation (24). Combining Equations (25)
and (24),

1/2
/ a, |2 (E-1) Tl_ 2| Y \\
\\' E _*_ h_ (COBG’) {_lﬂ) Y —‘Y-—1 -1 r
:1-1-, _ _2 \Ag‘ \* 2 Y +1 J J -
’ ] L 1-7y
) s 2 (E'-l)’ T e \
\:3—' ;;‘ (cos 6) \_1—2 ) l—y+1) -1
(27)

For :— >>1, the terms of the left hand side of the numerator of Equation (27) are

e
large compared to unity. That is,

1 1-
E ) — 1/2 )
JE A [ n \ (E-1)) 4 -1)
N el B (cosf) L L -1, ~
)12 A r 2 Y+l
(: e e }
—1_1 /2 7 b=y

[ ALy 2 (E-1) v i

E[_*) h_ (co®) y+1 Y -1

|12 |A | .t 2 ) Y+1 J (28)
i\ €/ \e ;

A
Since L = —= | then b > h >> 1
T r, v A, r, r,
-8-



By a similar argument, the denominator of Equation (27) can be written:

- 1 1-7y
5 —_— 1
Jl ol €1, TV oy P |
E_{h_ (cosg ) (l.il ;.'Y_l -1 ~
7 2 |r*'] R 2 } 7+1}‘ (
! ‘ - |
- J
......1_. 1/2 1-7y
fo ol RV (21
B 0 V| L '
12 '\* (cos6 ) |72 |y +1 (29)
[ ; I \
From Equations (28) and (29), Equation (27) now becomes:
1-y
M E (E'E')l :
M =[ET (cost) ) (30)

where E i{s defined by Equation (13) and E' by Equation (26).

Having once constructed tke flow field for a sonic nozzle from Equation
(25) for a given gas, the Mach number, M, in the flow field of a nozzle with exit
Mach numbers other than one can be readily determined from Equation (30). In other
words, for a given gas ( yfixed), plots of Equation (25) and (30) are sufficient to
establish tlie flow field Mach numbers for several nozzle exit conditions.
Fquations (25) and (30) are plotted in Figures 4(a) and 4(b), respectively, for
Y = 1.4. An example calculat.on to demonstrate the use of these two charts is
provided in the Appendix, Example 2.

In preliminary des‘gn and proposal studies, wherein various nozzle exit
conditions and gases may be ur er investigation, plots of Equations (25) and (30)
similar to that in Figures 4 {a) and 4(b) for other gases should be of considerable
value.




SECTION 3

RESULTS AND DISCUSSION

Flow field Mach numbers computed by the present approximate method are
compared with available solutions by the method of characteristics for sever:' gases
and nozzles exhausting into a vacuum.

Comparisons are presented in Figures 5 and 6 for h/re < 35. Figure 5
shows a comparison over the entire flow field for M, = 2.94 and ¥ = 1.4
(Reference 2, for a 15-degree conical nozzle);* and, in Figure 6, the Mach number
distribution along the jet centerline is compared for M, = 1.0 and ¥ = 1.4
(Reference 3, for a nearly sonic orifice). Also shown in Figure 6 is the first
order solution based on Equation (2).

Figures 7 and 8 show Mach number comparisons for higher values of h/r
(between 40 and 600). The entire flow field is compared in Figure 7 for M = 3.93
and Y = 1.26 (Reference 4 for a 15-degree semidivergence nozzle angle). Axial Mach
number comparisons are presented in Figure 8 for Mg = 4.0 and ¥ = 1.24 (Reference 4
for a 20-degree semidivergence nozzle angle).

Examining the axial Mach number distribution in Figures 5 through 8 (shown
directly in Figures 6 and 8 and along the axis 6 = O in Figures 5 and 7) the
present method, in general, is seen to overestimate the Mach number (relative to the
Mach number by the method of characteristics) at a given value of X/re along the axis.
Inasmuch as the comparisons presented in Figures 5 and 6 are for relatively low
values of h/r,, the agreement with characteristics solutions is surprisingly good.
Note, for example, in Figure 5 at X/re = 25.4, and in Figure 6 at X/re = 20, the
axial Mach number computed by the pr.sent method are in error by roughly 2 percent,

* In the development of this approximate method the mass flux l eVeAe into the
control surface was taken to be constant, i.e., parallel nozzfe. For a conical

nozzle this is still a reasonable approximation and the method should be valid
for conical nozzles as well.

-10-




relative to thcose by the method of characteristics. At larger values of h/re, where
the radial flow assumption is more appropriate, better agreement is evidenced. In
Figure 7, at X/re = 134, and in Figure 8 at X/r, = 500, the relative errors in axial
Mach number are on the order of 1 percent. An examination of the axial Mach number
distribution in Figure 6 reveals that the present method iepresents a substantial
improvement over the first order solution (Reference 1). At X/re = 20, the relative
error in axial Mach number is reduced from 16 percent (first order solution) to

2 percent by the present solution. Note also that the present solution converges
toward the characteristics solution as X/re increases; whereas, the first order
solution does not show this trend.

Normal to the jet centerline, the present method predicts the general
shape of the Mach contours fairly accurately (see Figures 5 and 7). For the same
constant Mach number, it is seen that the two curves (approximate and characteris-
tics solutions) cross each other. Evidently, at the point of intersection, the
agreement between the two solutions is exact. Over the entire flow field, however,
no consistency is evidenced with respect to the angle 6 at which this crossover
occurs.

The deviations discussed above are attributed to the assumed density pro-
file on which the present method is based. The assumed density profile, Equation (*),
does not satisfy the boundary conditions at the edge of the jet. That is, the
cosine distribution of Equation (4) presumes a boundary (M = © ) at 6 = 90 degrees,
whereas, in theory, the exhaust flow from a nozzle into a vacuum can expand to an
angle greater than 90 degrees, depending on the gas ratio of specific heats, and the
nozzle geometry. Better correlation with the method of characteristics should be
realized by considering the flow past 90 degrees. Evidently, a aensity distribution
other than the present cosine function must be assumed.

No general criteria, applicable for all gases and nozzle geometries, has
been established with regard to the lower limit (%_ ) of applicability for the
e

present method. However, an examination of several theoretical streamline patterns
for nozzles exhausting into a vacuum (References 2 and 5) has indicated that for
Y = 1.4 and Mg > 3, the lower limit may be taken as h/r, = 10

The present approximate method can be extended to 2stimate Mach number
contours for a rocket exhausting into a near vacuum environmment (such as in a
vacuum chamber). Whereas the flcw field in a vacuum is shock free, the flow behind
a rocket exhausting into a finite pressure region (at rest) is characterized by a
curved shock which closely follows the jet boundary and eventually returns to the
jet axis as a normal shock further downstream of the nozzle exit. The adjustment of
flow to the ambient pressure occurs in the outer region between the shock and jet
boundary. Interior of the shock, the fiow is unaffected by the ambient pressure and
is identical to the corresponding portion of a vacuum jet flow field having the same
M. and 7V .
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APPENDIX

EXAMPLE CALCULATIONS

P = P(h,0)

NOZZLE EXIT

M, r
e e

The present method can be utilized to determine properties at the point P
in the flow of a nozzle exhausting into a vacuum. Tne method is applicable for
h/re D>1. For a given gas specific heat ratio (7Y ), nozzle dimension (re), and

either (Ae/Ax) or Me, properties at the point P can be determined by either of the
following two methods:

(1) The basic solution derived from continuity and momentum

considerations: Equation (24) can be solved directly for
the Mach number.

(2) The generalized solution based on a sonic nozzle flow

field. Combined plots of Equations (25) and (30) provide
a rapid means for calculating the flow field behind a
rozzle having exit Mach numbers other than one.

Example calculations are presented for Y = 1.4. In Example 1, the local Mach
number at the point P is determined directly from Equation (26) The same problem

1s solved in Example 2 using the generalized procedure based on a sonic nozzle flow
field (Equations 25 and 30).

-13-



EXAMPLE CALCULATIONS

Example 1 (Direct application of Equation 24)

Given: M. = 3.0, re ® 2 inch, Y = 1.4
Calculete: Local Mach number, M, at the point h = 40 inch, 6 = 30°
h Ay
(a) Determine — , E, and —
r A
e e
A, 1
= ol .0, = 1-4
Ae 2235 from NACA 1135 for Me 3 Y
h 40 in.
r * "2 in. 20
e
e >
Y Me
E = —rs 1 Equatj_on (13)
-\ 1 + — - d + —
(v -1)M, | vy
1+ "L""E
e . (1.4) (3)
_\/1 + _2——5 - {1 + —1—2—'
(1.4-1)(3) 1.4(37)

E = 6.43

(b) The Mach number, M, is calculated from Equation 24:

1 1/2
r -2 1-7
A \ E-1 1-7 1/2
ez [ Afn x4l -l } i
M g 7_1\2 A (r ‘ (cos 0) 2 } (’Y*’l ‘ 3
- e EI -
- 1
(6.43-1) 1-1.4
_ ]2 6.43 1 -2 o 1.4+1
i 1.4-1{L 2 Z.235 (20) " (cos 307) { 2 )
- (1-1.4) 1/2
L.4-1 1/2-] ]
1.4+1 )

-14-




EXAMPLE CALCULATIONS

Example 2 (From combined plots of Equations 25 and 30)

Given: Me = 3.0, re =2 inch, vy =1.4
Calculate: Local Mach number, M, at the point h = 40 inch and 6 = 30°
Ay
(a) Determine — and —
A r
e *
A, |
_K: Z 239 from NACA 1135 for Me =3.0, vy =1.4
h . b /R w0 yTEE
I r, -\( A, 2
N G
Ty

(b) Find M' from Figure 3(a) (sonic nozzle flow field, 7y =1.4):

h_

*

For = 41.2 and 6 = 30°, from Figure 3(a):

M' = 12.75

(c) Find M/M' from Figure 3(b) (Mach number trarsformations-curves, Y = 1.4):

For Me = 3.0 and 9 = 30°

M/M' = 0.922
(d) Then:
M = 0.922 M' = 0.922 (12.75)

M = 11.75

-15-
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M/M'

FLOW FIELD MACH NO. BASED ON
SONIC NOZZLE

NOZZLE EXIT MACH MLO. Me = &

FLOW FIELD MACH NO. CORRESPONDING
TO Mg EXIT MACH NO.

T T L] LB T | -+
10 20 30 40 50 60 70
6 (DEGREES) RO68 L5

FIGURE 4b. MACH NUMBER TRANSFORMATION CURVES
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AXTAL MACH NUMBER (M)

10
9
8 -
7 -
6
5 —
a ey
— _ __FIRST ORDER AFPROXIMATE SOLUTION
(REF 1)
3 A == ==<===PRESENT APPROXIMATE SOLUTION
CHARACTERISTICS SOLUTION (REF 3)
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FIGURE 6. COMPARISON OF AXIAL MACH NUMBER DISTRIBUTION FOR A

ROCKET EXHAUSTING INTO A VACUUM (M, = 1.0, ¥ = 1.4)
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